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A B S T R A C T

ConsiGmaTM-25 is a continuous production plant integrating a twin-screw granulation, fluid bed drying, granule
conditioning, and a tableting unit. The particle size distribution (PSD), active pharmaceutical ingredient (API)
content, and liquid content of wet granules after twin-screw granulation affect the quality of intermediate and
final products. This paper proposes methods for real-time monitoring of these quantities and control-oriented
modeling of the granulator.

The PSD of wet granules is monitored via an in-line process analytical technology (PAT) probe based on
the spatial velocimetry principle. The algorithm for signal processing and evaluation of PSD characteristics
is developed and applied to the acquired PSD data. A dynamic process model predicting PSD characteristics
from granulation parameters is trained via the local linear model tree (LoLiMoT) approach. The experimental
data required for the model training are collected via systematically designed excitation runs. Finally, the
performance of the identified model is examined and verified by means of a new set of validation runs.
Furthermore, an in-line PAT probe based on Raman spectroscopy is developed and integrated after the
granulator. The API- and liquid content of produced wet granules are evaluated from the spectral data by
means of chemometric modeling, and chemometric models are validated on a separate set of experimental data.
The solutions proposed in this research can be used as a reliable (and necessary) basis for the development
of advanced quality-by-design control concepts (e.g., PSD process control). Such concepts would ultimately
improve the ConsiGmaTM-25 process performance in terms of robustness against disturbances and quality of
intermediate and final products.
1. Introduction

The pharmaceutical industry nowadays is in transition from stan-
dard batch-based to continuous manufacturing. The continuous man-
ufacturing of pharmaceuticals comes with a range of benefits, such
as increased production flexibility, better quality control, reduced en-
ergy consumption, and lower environmental footprint via waste reduc-
tion (Lee et al., 2015).

The ConsiGmaTM-25 is a well-known continuous manufacturing
plant integrating a twin-screw granulator (TSG), a fluid-bed-dryer
(FBD), a granule-conditioning unit (GCU), and a tablet press (TP). The
common ConsiGmaTM-25 operation mode, i.e., the operation with em-
pirically determined, constant process parameters and with only limited
real-time monitoring of intermediate/final critical quality attributes
(CQA), does not fully exploit the benefits of continuous manufactur-
ing. Potential disturbances (equipment faults, material variability, or
operator mistakes) lead to quality degradation of intermediate/final
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products. Thus, the process performance could be improved by means
of the pharmaceutical quality-by-design (QbD) approach (ICH, 2009,
2005, 2008, 2012), specifically via the implementation of quality and
process control concepts (Yu et al., 2014). There are some essential
requirements for the development of model based control concepts:
real-time monitoring of CQAs via process analytical technology (PAT)
tools, and the process models linking the critical process parameters
(CPP) to CQAs. The performance of the ConsiGmaTM-25 twin-screw
wet granulation unit is significantly affecting the final product qual-
ity: Wet granulation is a size enlargement process that improves the
flowability properties of raw material, reduces the risk of segregation,
and improves content uniformity (Seem et al., 2015). The particle size
distribution (PSD) of wet granules is considered an intermediate CQA
affecting the final product quality (e.g., tablet dissolution Markl et al.,
2020; Zaborenko et al., 2019), and the performance of the subsequent
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unit operations (e.g., filter clogging in the FBD due to formation of
fines). The active pharmaceutical ingredient (API) content of the wet
granules is another intermediate CQA. A long-term out-of-specification
(OOS) API content of wet granules due to material segregation or
equipment faults would be reflected in the final product, i.e., tablet
quality. Therefore, the paper at hand focuses on the solutions required
for the real-time monitoring and control of PSD and API content
(i.e., PAT equipment and process models).

An approach for the real-time monitoring and control of the granule
size after the twin-screw granulation is proposed in Nicolaï (2019).
This study raises the issue of the nonlinear behavior of the granula-
tion process claiming that the granule size controller should consider
this system property when choosing the correct control action. Linear
controllers, e.g., PID controllers, therefore cannot fully exploit the
potential of the granulation process. However, if the process model
capturing the nonlinear behavior of the investigated system would
be available, more sophisticated, nonlinear model-based control con-
cepts could be developed. Although several modeling approaches for
twin-screw granulation can be found in the literature (Barrasso et al.,
2014, 2013; Barrasso and Ramachandran, 2015), they are typically
not directly applicable to the design of model-based control strategies.
Advanced modeling approaches, such as gPROMS (gProms, 2023), offer
a possibility for in-silico process investigation via digital twin and
flowsheet modeling (Wang et al., 2022; Metta et al., 2019). Although
very promising for sensitivity analysis, these models are not yet suitable
to capture the dynamic behavior of twin screw granulation. If such a
feature is available, the modeling procedure could be transferred from
the ConsiGmaTM-25 line to the simulation environment. However, due
to computational demand, it is not possible to directly apply these
models for model predictive control design. In contrast, Shirazian et al.
(2017) proposes a modeling approach based on an artificial neural
network (ANN) algorithm for a static prediction of PSD characteristics
for different operating conditions based on experimental data. Although
the promising results presented in this work indicate the potential of
the data-driven ANN approach (in terms of accuracy and computation
time), they do not consider further important prerequisites, such as
the dynamic behavior of the system or the real-time measurement of
critical quantities.

The paper at hand closes the existing gaps by providing a systematic
framework for developing a dynamic process model for granule size
prediction that is suitable for model predictive control (MPC) concepts.
It can be used as a step-by-step guide through the development of a
PAT strategy, definition of model structure (model inputs and outputs),
systematic design of excitation runs (collecting experimental data that
accurately reflect the dynamic behavior of the system), signal process-
ing, and model training. In order to monitor the PSD of wet granules in
real-time, an in-line PAT probe based on the spatial filter velocimetry
principle is mounted at the TSG outlet. The relevant PSD characteristics
are extracted from acquired distribution data and the respective CPPs
are identified. Furthermore, a process model describing the relation
between the granulation CPPs and PSD characteristics is developed
by means of a local-linear model tree (LoLiMoT) algorithm (Nelles,
1997). For control design purposes, LoLiMoT is a powerful data-driven
alternative to physically motivated modeling approaches suggested
in Barrasso et al. (2014, 2013) and Barrasso and Ramachandran (2015).
Although this model identification approach is tailored to a specific
pharmaceutical model formulation, the proposed method for the design
of excitation runs is generally applicable and can be quickly adapted
to different formulations. As shown in Rehrl et al. (2019), process
models based on the LoLiMoT approach allow a straightforward devel-
opment of advanced model-based process control concepts, e.g., MPC.
A nonlinear MPC integrating the process model identified in this work
would not encounter the nonlinearity issue raised in Nicolaï (2019).
To capture the remaining CQAs of the wet granulation, this paper
proposes an in-line PAT solution based on Raman spectroscopy, as well
2

as the appropriate chemometric modeling approach for extracting API
Table 1
Formulation of pre-blend material.
Nr. Raw materials Quantity (wt. %)

1 Methyl 4-hydroxybenzoate
API surrogate

4.12

2 VIVAPHARM HPMC 5.15
3 Avicel PH101 21.41
4 Granulac 200 69.32

content information from acquired spectral data. In addition to the API-
, the liquid content of wet granules is extracted from the spectral data
by means of chemometric modeling. This could be an alternative to
the approach for the real-time monitoring of liquid content after the
granulation via NIR proposed in Nicolaï et al. (2018).

The performance of all the solutions developed in this study is
confirmed via separate sets of validation experiments. Finally, based
on these solutions, typical applications focusing on the quality/process
control for the ConsiGmaTM-25 production plant are proposed.

2. Materials and methods

2.1. Materials

Wet granules were produced from a powder pre-blend and deion-
ized water. The pre-blend material consisted of Methyl
4-hydroxybenzoate (Sigma Aldrich, USA), also known as
Methylparaben, as the API surrogate material, and three excipients,
i.e., VIVAPHARM HPMC (Demacsa, Mexico), Avicel PH101 (DuPont,
Ireland), and Granulac 200 (Meggle, Germany). Table 1 shows the
nominal pre-blend composition.

2.2. Granule size modeling

2.2.1. Technical process description
The loss-in-weight feeder K-TRON KT 20 (Coperion K-Tron, Switzer-

land, Coperion, 2023) was placed at the inlet of the TSG of the
ConsiGmaTM-25 plant (GEA, Belgium, GEA, 2023). It was filled with
the pre-blend material which was fed at a nominal solid feed rate
(SFR) of 15 kg∕h. A liquid tank stored deionized water, which was
supplied to the TSG by means of a mass flow controlled peristaltic
pump at a liquid feed rate (LFR) of 60 g∕min, resulting in the nominal
liquid-to-solid ratio (LS) of 24 %. The TSG with a screw diameter of
20 mm and a length-to-diameter ratio of 20:1 was operated with the
nominal screw speed (SS) of 700 rpm. The chosen screw configura-
tion was: 1 K/6/2 × 1T/2 × 1,5T/4 × 2T/6K/4 60◦/1 × 1,5T/6K/4
60◦/1 × 1,5T/2K/6 60◦, with K representing kneading- and 𝑇 repre-
senting transport elements (e.g., 2 K/6 60◦ stands for two kneading
elements shifted by 60◦, with a length of 1/6 of their diameter). The
nominal barrel temperature (BT) of 30 ◦C was controlled by a PID
controller. The pre-blend material was conveyed among the granulator
screws, the liquid was distributed, and wet granules were produced.
Fig. 1 shows a schematic diagram of the investigated granulation unit.

2.2.2. PAT strategy
The size of the wet granules was captured in-line by means of an

IPP 80-P inline particle probe (Parsum GmbH, Germany, Parsum, 2023)
mounted at the TSG outlet. The probe uses the spatial filter velocimetry
principle. In brief, in the measurement volume a laser diode emits
a beam sensed by an array of optical fibers connected to individual
photo-detectors. Particles passing through the volume therefore cast
a shadow on the detectors, generating a signal on the whole array
whose frequency is proportional to the velocity. The time of flight
is determined by the time a single photo-detector is blocked by the
shadow of a moving particle. From these two signals, the chord length
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Fig. 1. Schematic representation of the ConsiGmaTM-25 granulation unit with the
Parsum probe monitoring the size of wet granules. Legend: Solid feed rate (SFR), liquid
feed rate (LFR), screw speed (SS), barrel temperature (BT).

distribution and subsequently the PSD is calculated by the instrument
software IPP V9.00 (Dieter et al., 2011; Silva et al., 2013).

The IPP 80-P probe was mounted directly in the product stream
at the granulator outlet with the help of a custom built mechanical
interface, depicted in Fig. 2. The design consists of a Ø100 mm cylin-
drical tube intersected with a Ø80 mm tube sideways, with welded
tri-clamp flanges, and a conical shape toward the bottom. The stainless
steel interface can be opened for inspection and is easy to clean. The
D12 disperser unit with an inlet opening of Ø7.5 mm that includes a
teflon coated cap for less adhesion of the wet granules, was attached to
the probe. An air unit constantly supplies the disperser and cleans the
optical windows with an air flow set to 6 and 30 l∕min, respectively.
Additional purge air pulses are used every 8 s to remove granules if they
got stuck or block the disperser inlet. An additional valve is mounted
on top of the TSG for pressure compensation, such that the internal
ConsiGmaTM-25 pressure sensor does not trigger a false alarm due to
the pulses.

The instrument software was set to a ring buffer of 5000 particles for
fast response, using the whole measurement range from 50 to 6000 μm
and an acquisition rate of 1 s. The software outputs are the number-
density and volume-density distribution of the PSD, as well as the
velocity distribution, aspect ratio, and particle rate (the number of
particles per second passing the probe). In this work a volumetric
density distribution 𝑞3(𝑥), given for a size array 𝑥 of 𝑛𝑑𝑖𝑠𝑡 = 36
size fractions, was used. All process data were centrally stored and
made available on the SIMATIC SIPAT 5.1.1.0 platform (Siemens AG,
Germany, Siemens, 2023). Methods and collectors were defined in
SIPAT to interface with the Parsum OPC-DA server (Parsum GmbH,
Germany, Parsum, 2023) and the iFix OPC-DA (GE Digital, USA, iFix,
2023) for the ConsiGmaTM-25 SCADA/HMI system.

2.2.3. Particle size distribution (PSD) characteristics to be modeled
In order to use the PSD information captured via the Parsum probe

for modeling or control purposes, the relevant scalar characteristics
should be extracted from measured distribution data. These PSD char-
acteristics should reflect the physical properties of the produced gran-
ules and also be available in real-time (important for application in a
feedback control concept). Following that idea, the four statistic mo-
ments (𝑀1,𝑀2,𝑀3 and 𝑀4) are defined as PSD characteristics (Stieß,
2008; Ramsey et al., 2002). The connotation of individual moments is
explained by an example with three arbitrary distributions depicted in
Fig. 3.
3

PSD-moment 1. The first moment (mean/expected value) of a distribu-
tion is defined as

𝑀1 = ∫

∞

−∞
𝑞3(𝑥)𝑥 𝑑𝑥. (1)

An increase in the average size of produced granules is reflected by an
increase of 𝑀1.

PSD-moment 2. The second central moment (variance) of a distribution
is defined as

𝑀2 = ∫

∞

−∞
𝑞3(𝑥)(𝑥 −𝑀1)2 𝑑𝑥. (2)

𝑀2 captures the distribution broadness, i.e., the higher 𝑀2 gets, the
higher the possibility to find the granules further away from the mean
value 𝑀1.

PSD-moment 3. The third standardized moment (skewness) of a distri-
bution is defined as

𝑀3 = ∫

∞

−∞
𝑞3(𝑥)

(

𝑥 −𝑀1
√

𝑀2

)3

𝑑𝑥. (3)

𝑀3 provides information on the distribution shape, i.e, the relative
size of the distribution tails. A negative value of 𝑀3 implies a longer
distribution tail on the left, and a positive value of 𝑀3 implies a longer
tail on the right side of the observed distribution.

PSD-moment 4. The fourth standardized moment (kurtosis) of a distri-
bution is defined as

𝑀4 = ∫

∞

−∞
𝑞3(𝑥)

(

𝑥 −𝑀1
√

𝑀2

)4

𝑑𝑥. (4)

Similar to 𝑀3, 𝑀4 also provides information on the distribution shape.
It is a measure of the overall tail extremity, without giving information
on which side the effect is more pronounced.

In addition to the statistic moments, the following deviation mea-
sures are defined. Again, the meaning of individual measures is illus-
trated with the help of three distribution examples in Fig. 3.

Reference deviation. The first deviation measure represents the devia-
tion from an arbitrary reference distribution 𝑞3𝑟𝑒𝑓 and is calculated as

𝑒𝑟𝑒𝑓 = (𝑀1 −𝑀1𝑟𝑒𝑓 )
𝑛𝑑𝑖𝑠𝑡
∑

𝑖=1
|𝑞3,𝑖 − 𝑞3𝑟𝑒𝑓 ,𝑖|. (5)

This measure is a suitable choice for implementing a PSD control loop:
A distribution that yields the best final product properties and that
results in a robust process performance can be selected as the reference
distribution. The control loop would then aim at driving 𝑒𝑟𝑒𝑓 to zero.
For the model development purpose, an arbitrary Gaussian distribution
with a mean value of 1555 μm and a standard deviation of 900 μm is
chosen as a reference distribution (for this reference distribution, 𝑒𝑟𝑒𝑓
approximately equals zero at nominal process parameters).

Normal deviation. The second deviation measure is calculated as

𝑒𝑛𝑜𝑟𝑚𝑎𝑙 =
𝑛𝑑𝑖𝑠𝑡
∑

𝑖=1

( 𝑞3,𝑖 − 𝑞3𝑛𝑜𝑟𝑚𝑎𝑙,𝑖(𝑀1,𝑀2)
𝑞3𝑛𝑜𝑟𝑚𝑎𝑙,𝑖(𝑀1,𝑀2)

)2

(6)

and it represents the deviation from the Gaussian distribution with the
equivalent first and second characteristic moments. This quantity is rel-
evant for the development of the signal processing concept. However,
it is not relevant for the modeling as it cannot be directly correlated to
the specific physical properties of the granules.

PSD signal processing. The cleaning of the Parsum PAT probe (for more
details please refer to Section 2.2.2) sometimes results in corrupted PSD
measurements. The corrupted PSD data provide no useful information
and could compromise the process modeling. The developed PSD signal
processing algorithm detects and replaces the corrupted PSD data in
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Fig. 2. Mechanical interface integrating the Parsum IPP 80-P inline particle measuring probe mounted at the granulator outlet (CAPRI, 2023a).
Fig. 3. PSD characteristics illustrated by three arbitrary distributions: A distribution shift from left (PSD 1) to the right (PSD 3) correlates with an increase of the respective first
moment 𝑀1, i.e., with an increase in the average size of the produced granules. The low 𝑀2 value of the narrow second distribution indicates the low chance of finding the
granules further away from the calculated 𝑀1. The first distribution with the long tail on the right implies an overall higher amount of agglomerates than fines (reflected in the
positive sign of 𝑀3). The opposite can be stated for the third distribution characterized by the negative 𝑀3 value. The lowest tendency toward granule size outliers of the second
distribution is correlated with the lowest 𝑀4 value (compared to PSD 1 and PSD 3), and vice versa. The second distribution is similar to a Gaussian and exhibits a low 𝑒𝑛𝑜𝑟𝑚𝑎𝑙
value. The first and third distributions show higher, yet similar deviation, again reflected in the respective 𝑒𝑛𝑜𝑟𝑚𝑎𝑙 values. To illustrate the meaning of the reference deviation, PSD
2 is chosen as the reference distribution. Positive/negative 𝑒𝑟𝑒𝑓 values imply the production of larger/smaller granules than for the reference distribution. The total extent of the
deviation is reflected in the absolute value of the reference deviation.
the following way: The current value of normal deviation 𝑒𝑛𝑜𝑟𝑚𝑎𝑙 is
compared to the mean value over a time window 𝑛𝑓𝑖𝑙𝑡𝑒𝑟 = 20, and the
respective difference is calculated. If the calculated difference exceeds
the threshold of 2.5 standard deviations over the same time window,
the measured PSD is detected as corrupted. The corrupted PSD is re-
placed with the mean value over the same time window. Fig. 4 depicts
the performance of this concept. Furthermore, in order to improve
the signal-to-noise ratio (SNR), all introduced PSD characteristics are
low-pass filtered via the following difference equation

𝑦 = 0.15𝑦 + 0.85𝑦 (7)
4

𝑓𝑖𝑙𝑡,𝑘 𝑘 𝑓𝑖𝑙𝑡,𝑘−1
with 𝑦𝑘 representing the evaluated and 𝑦𝑓𝑖𝑙𝑡,𝑘 representing the filtered
value of the signal at the 𝑘th time instant. The filter coefficients are
chosen as a compromise between the achieved SNR and the time delay
brought into the system by filtering.

2.2.4. Definition of model structure
The aim of modeling is to develop a simple, yet comprehensive

description of the system of interest. The process parameters that have
an influence on the product quality attributes are determined and
considered as model inputs. In control-oriented modeling, the model
inputs can be perceived as process actuators (i.e., can be externally
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Fig. 4. The developed PSD signal processing concept detects and replaces a corrupted
measurement.

Table 2
Executed DoE for capturing the effect of granulation process parameters on the size of
wet granules.

Run Nr. LS SFR BT SS 𝑀1 𝑀2 𝑀3 𝑀4 𝑒𝑟𝑒𝑓
[/] [%] [ kg

h
] ◦C [rpm] [mm] [mm2] [/] [/] [/]

1 24 15 30 700 2.2 1.7 −0.07 1.7 0.07
2 18 10 35 900 1.0 0.6 0.22 1.7 −0.21
3 18 20 35 900 1.2 0.6 0.04 1.78 −0.11
4 30 10 35 500 3.0 2.4 0.13 2.2 0.22
5 30 20 35 500 2.9 2.0 −0.2 2.1 0.19
6 24 15 30 700 2.0 1.5 −0.1 1.8 0.06
7 18 20 25 500 1.3 0.7 −0.06 1.7 −0.10
8 18 10 25 500 1.2 0.6 −0.07 1.7 −0.14
9 30 20 25 900 3.0 1.6 0.176 2.4 0.21
10 30 10 25 900 3.0 2.3 0.1 2.2 0.21
11 24 15 30 700 2.0 1.3 −0.18 1.9 0.06

Acronyms:
Granulation process parameters: Liquid-to-solid ratio (LS), solid feed rate (SFR), barrel
temperature (BT), screw speed (SS).
Particle size distribution characteristics: Moment 1 (𝑀1), moment 2 (𝑀2), moment 3
(𝑀3), moment 4 (𝑀4), reference deviation (𝑒𝑟𝑒𝑓 ).

manipulated in real-time). Real-time monitored quantities that reflect
the product quality attributes are considered as model outputs.

In order to select the model structure, a systematic investigation
of the influence of granulation process parameters on the granule size
was performed. Solid feed rate, liquid-to-solid (LS) ratio, screw speed,
and barrel temperature were considered to be potential model inputs,
and the PSD characteristics introduced in Section 2.2.3 were considered
to be potential model outputs. A design of experiments (DoE) was
performed using the Plackett Burman screening design in Modde DoE
software (Sartorius, Germany, Sartorius, 2023a). This DoE is shown
in Table 2 and it involved eleven runs with simultaneous changes in
granulation process parameters. The duration of individual runs was
adjusted during the experiments, such that both model inputs and out-
puts reach a steady state. Obtained results indicate a strong relationship
between the granule size (more specifically its first, second, fourth
moment, and the reference deviation) and granulation LS. Influence
of other process parameters was not confirmed. Therefore, these are
excluded from the modeling procedure. The proposed structure of the
granule size process model is depicted in Fig. 5. Due to reproducibility
issues, the third characteristic moment is excluded from the model
structure.
5

Fig. 5. Proposed structure of the granule size process model.

2.2.5. Local linear model tree (LoLiMoT) approach
The process modeling is performed by means of the LoLiMoT ap-

proach (Nelles, 1997). LoLiMoT is an algorithm for the data-driven
identification of nonlinear systems by means of weighted local linear
models (LLM).

General description. The standard model structure depicted in Fig. 6(a)
involves 𝑝 inputs 𝑢1,… , 𝑢𝑝, and one output �̂�. Each of 𝑀 LLMs outputs
is associated with the respective validity function 𝛷1,… , 𝛷𝑀 . LoLiMoT
is a two-step approach: The first step involves LLM parameter identifi-
cation (𝑤𝑖0,… , 𝑤𝑖𝑝, 𝑖 ∈ 1,… ,𝑀), with individual LLM outputs defined
as

𝑦𝑖 = 𝑤𝑖0 +𝑤𝑖1𝑢1 +⋯ +𝑤𝑖𝑝𝑢𝑝. (8)

The second step involves the input range partitioning in order to
determine the tree structure of the 𝑀 LLMs. The final model output
is calculated as a weighted sum of individual LLMs

�̂� =
𝑀
∑

𝑖=1
�̂�𝑖𝛷𝑖(𝑢). (9)

Fig. 6(b) illustrates the application of the LoLiMoT algorithm for the
approximation of a nonlinear static function.

Design of excitation run. Data-driven modeling implies a direct relation-
ship between the experimental data used for the model identification
and the model quality. The choice of appropriate excitation signals for
modeling experiments is crucial to obtain an accurate model. There-
fore, a combination of two excitation runs was performed. The first
excitation run involved amplitude modulated pseudo random binary
signal (APRBS) LS variations. APRBS, characterized by random level
amplitude (A) and level duration (L) is a standard choice for the
LoLiMoT excitation signal. The results of the first excitation run were
utilized to design the second excitation run. Again, the LS sequence
was chosen in an APRBS-like fashion, but A and L were optimized to
achieve the maximal average distance between the new and existing
data points. The following paragraph can be used as a step-by-step
guide for the design of the excitation run (for the visual representation
of the introduced steps please refer to Section 3.1).

Step 1. An APRBS LS sequence was designed using the System Iden-
tification Toolbox in MATLAB (MATLAB, 2023c) and applied to the
real production plant. The PSD of produced wet granules was captured
via the Parsum probe, and the first moment was evaluated according
to Eq. (1). The first part of the experiment (approximately thirty
minutes) involved slow transitions between the random amplitude
levels offering an insight into the steady-state behavior of the system.
The second part of the experiment involved fast transitions between
the random amplitude levels capturing the system behavior in high
dynamic regions.
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Fig. 6. LoLiMoT approach.
Step 2. The designed LS- and measured 𝑀1 sequences were provided as
the identification data for the LoLiMoT algorithm. Preliminary LoLiMoT
training was performed and the neuro-fuzzy-model(NFM) (Mishra,
2020) describing the relation between the LS and 𝑀1 was obtained.
This NFM was used to predict the first characteristic moment 𝑀1,𝐿𝑂𝐿.
Also, the collected data was used to examine the coverage of input–
output (IO) space. Typically, there are a few non-covered areas remain-
ing in the IO space (for more details please refer to Section 3.1). To
improve the model performance in these areas, the second excitation
run was designed.

Step 3. In order to avoid repeating the already available experimental
data points, the new APRBS-like LS sequence was designed in an
optimal manner. The work (Heinz and Nelles, 2018) introduces an
approach for the iterative optimization of LoLiMoT excitation signals.
Level amplitude A and level duration L are considered optimization
variables in each iteration. The optimization objective is defined by
means of the following cost function

𝐽 = 1
𝐿

𝑁+𝐿
∑

𝑘=𝑁+1
𝑑𝑁𝑁 (𝐗𝑜𝑙𝑑 , 𝐱𝑘). (10)

The function 𝑑𝑁𝑁 calculates the smallest distance between any existing
data point stored in 𝐗𝑜𝑙𝑑 and the newly created one 𝐱𝑘, i.e., maximizing
𝐽 is equivalent to maximizing the distance between the existing and
new data points. The proposed algorithm involves the following steps:

• Initialization: The data matrix 𝐗𝑜𝑙𝑑 is filled with the available data
set of size 𝑁 . In the first iteration, 𝐗𝑜𝑙𝑑 contains the identification
data collected in the Step 1.

• Optimization problem is defined as

max
𝐴,𝐿

1
𝐿

𝑁+𝐿
∑

𝑘=𝑁+1
𝑑𝑁𝑁 (𝐗𝑜𝑙𝑑 , 𝐱𝑘),

s.t. 17% ≤ 𝐴 ≤ 32%

20 s ≤ 𝐿 ≤ 240 s

𝐿 ∈ Z

(11)

with 𝐱𝑘 holding the to-be-optimized 𝐿𝑆𝑛𝑒𝑤 = [𝐴𝑛𝑒𝑤 …𝐴𝑛𝑒𝑤] signal
of the length 𝐿𝑛𝑒𝑤, and the respective first moment 𝑀1,𝑛𝑒𝑤 pre-
dicted via the preliminary NFM obtained in the Step 2. The opti-
mization problem is solved by means of a genetic algorithm using
the Global Optimization Toolbox in Matlab (MATLAB, 2023a).
The genetic algorithm is chosen due to its capability to consider
integer constraints (i.e., 𝐿 ∈ Z). The optimal 𝐴𝑛𝑒𝑤 and 𝐿𝑛𝑒𝑤
are obtained, the new LS sequence is appended to the existing
6

one, and the matrix 𝐗𝑜𝑙𝑑 is accordingly extended. Note: For more
details on the introduced approach (e.g., 𝑑𝑁𝑁 ,𝐗𝑜𝑙𝑑 , 𝐱𝑘 defini-
tion) please refer to Heinz and Nelles (2018), Universität Siegen
(2023).

• The optimization procedure is repeated until the specified exper-
iment duration is reached.

Step 4. The optimal LS sequence obtained in the Step 3 was applied
to the ConsiGmaTM-25, the resulting PSD variations were measured
(the respective 𝑀1 evaluated), and the final IO space coverage was
examined.

2.3. Granule API- and liquid content

2.3.1. Technical process description
For the creation of the chemometric model, granules of different

levels of API content need to be presented to the Raman probe. In
order to generate the intentional variations of the API concentration,
a second loss-in-weight feeder was installed at the granulator inlet.
The first and second feeder were filled with the pre-blend materials
with the API concentration of 8% and 0%, respectively. The quantity
of individual excipients in the pre-blends was adjusted to keep the
same ratio as for the pre-blend depicted in Table 1. The two feeders
supplied the pre-blend powders with the nominal SFR of 7.725 kg∕h,
and 7.275 kg∕h, resulting in the nominal API concentration of 4.12%
at the granulator inlet. The remaining granulation parameters stayed
the same as introduced in Section 2.2.1. A schematic representation of
the ConsiGmaTM-25 granulation unit depicted in Fig. 1 remains similar
with two adaptations: The setup is extended with an equivalent second
loss-in-weight feeder placed at the granulator inlet, and the Parsum
measurement probe providing size distribution data is replaced by a
Raman probe providing spectral data at the granulator outlet (please
refer to Section 2.2.1 for more details).

2.3.2. PAT strategy
The API content of the produced wet granules was captured by

means of a sampling device and the Raman method. The Raman method
is the study of in-elastically scattered light (i.e., photons scattered as
different wave number) from a monochromatic light source in the
context of vibrational spectroscopy. A fingerprint of specific bands is
observed representing the different molecular bonds of the material
and its attributes like polymorphic form. This makes the method in-
teresting to be utilized as a PAT tool, as the peak heights correlate
with concentration. Compared to near-infrared spectroscopy (NIRS),
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Fig. 7. Sampling device used to present the granules to the Raman probe (CAPRI, 2023a).
only a modest influence of PSD is present (Paudel et al., 2015). How-
ever, the in-line implementation is more complex than NIRS, as the
measurement volume has to be shielded from external light sources
and the sampling device has to be built from materials that do not
show reflective or auto-fluorescence behavior. Therefore, a sampling
device was designed that is suitable for wet granules and dry powder
handling, and allows hosting a wide-angle illumination Raman probe.
Specifically, the Rxn2TM Hybrid Raman process spectrometer with
attached PhAT (Pharmaceutical Area Testing) probe (Kaiser Optical
Systems, USA Kaiser Optical Systems, 2023) was used in the setup.
Because of its rapid prototyping capability and flexible design options,
3D-printing was used to create the needed parts. They were made of
matte black PLA NX2 (Extrudr, Austria Extrudr, 2023b) printed on a i3
MK3S+ (Prusa, Czech Republic Prusa, 2023). The design consists of two
rotating compartments with a volume of approximately 8ml each, in an
hourglass shape with a saphire glass (Edmund optics, Germany Edmund
Optics, 2023) on the other side, with printed cleaning seals of Flex
TPU (Extrudr, Austria Extrudr, 2023a), and purging air ducts. The
device is shown in Fig. 7. The complete construction fits inside the
Ø80 mm Tri-Clamp flange adapter as used with the Parsum probe (see
Section 2.2.2). Open source hardware and software solutions were used
when possible. A closed loop NEMA17 stepper motor (Bigtreetech,
China) with GRBL1.1 stepper motor controller board rotates the cups.
Air pulses are generated with a VPPE-3-1-1 pressure regulator valve
(Festo, Germany Festo, 2023) and 4–20mA T-Click interface board
(MikroE, Serbia MikroE, 2023). The communication and synchroniza-
tion between Raman and sampling device is implemented over OPC-UA
protocol.

The OPC-UA server, using the open source python-opcua library
(FreeOpcUa, 2023), runs on the Raman station and waits for a new
recorded spectrum from the iC Raman 4.1.915 software (Kaiser Optical
Systems), that are pushed to subscribed clients and starts the next
sampling cycle. The sampling device control box houses a Raspberry
Pi 4 Model B (Raspberry Pi, 2023) that executes two Python scripts
(using the opcua-asyncio library): The OPC-UA client for sample device
control and the chemometric model prediction engine. After the signal
for the new sample cycle is received, the purging air pulse is generated,
and the step motor is instructed to rotate the cups by 180 degrees.
Then the cups are filled with fresh granules and a 15 s Raman spectrum
acquisition takes place (until the measurement cycle starts over again).
The complete cycle time of 20 s is chosen as a compromise between
signal-to-noise ratio and measurement frequency.
7

2.3.3. Chemometric modeling
The Raman spectral data collected every 20 s (cycle time of the

sampling device) and the respective API concentration at the granulator
inlet 𝐶𝑖𝑛 (computed from the pre-blend concentrations and the feeder
mass flow rates) as

𝐶𝑖𝑛 =
𝑆𝐹𝑅1 ⋅ 8 %

𝑆𝐹𝑅1 + 𝑆𝐹𝑅2
(12)

were used for the chemometric model development. The baseline of the
captured Raman spectra was corrected using Whittaker’s asymmetric
least square (ALS) fitting algorithm (Eilers, 2003). Also, the standard-
normal-variate (SNV) processing of the selected part of the baseline-
corrected spectra (i.e., subtraction of the mean value and normalization
by the standard deviation) was performed. For initial chemometric
model development SIMCA multivariate data analysis software (Sarto-
rius Stedim Data Analytics AB, Sweden, Sartorius, 2023b) was used.
A partial least squares (PLS) regression model with three PLS compo-
nents was trained on the spectral range from 445 cm−1 to 1725 cm−1,
giving a root mean square error in cross validation of 0.20 wt% API.
Model coefficients were exported and used in a custom chemometric
prediction engine implemented in a Python script: An OPC-UA client
runs using the opcua-asyncio library, the spectra pre-processing steps
and PLS calculations are performed, and the predicted values are made
available via an OPC-UA server.

Furthermore, the Raman spectral data were used to estimate the
liquid content of the granules at the granulator outlet (𝐿𝑆𝑜𝑢𝑡). In this
case, the Raman spectral data and the respective 𝐿𝑆𝑖𝑛 at the TSG inlet
calculated as

𝐿𝑆𝑖𝑛 =
𝐿𝐹𝑅

𝑆𝐹𝑅1 + 𝑆𝐹𝑅2
(13)

were provided as the identification data for the development of the
second chemometric model. Again, the baseline correction and SNV
processing of the Raman spectra were performed. MATLAB with the
Statistics and Machine Learning Toolbox (MATLAB, 2023b) was used
to train a PLS model with six components on the spectral range from
100 cm−1 to 1600 cm−1. For a detailed description of DoE used for model
training, please refer to Section 3. Furthermore, the Raman analysis of
pre-blend raw materials was performed using the Raman PhAT probe
with an exposure time of 15 s (the same exposure time, as for the inline
measurement). The obtained raw spectra are shown in Fig. A.13 (please
refer to Appendix A).
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Fig. 8. Step-by-step design of the LoLiMoT excitation run.
3. Results and discussion

3.1. Granule size model

Experimental data for model identification. The experimental data re-
quired for model training were collected via systematically designed
excitation runs. As introduced in Section 2.2.5, two system excitation
experiments were performed, the first excitation run with a typical
LoLiMoT input sequence (APRBS), and the second excitation run with
an optimal input sequence. Fig. 8 outlines the steps taken for the design
of two excitation runs (please refer to Section 2.2.5 for details). The
introduced four-step approach involves the following: In Step 1 the
APRBS LS sequence was designed and applied to the ConsiGmaTM-25
(first excitation run), the induced PSD variations were captured via
the PAT solution introduced in Section 2.2.2, and the first character-
istic moment of the PSD was evaluated. Step 2 involves preliminary
LoLiMoT training (a model predicting 𝑀1 from LS trained on the
dentification data collected in Step 1) and examination of IO space
overage. In Step 3, the LS sequence was designed in an optimal manner
o cover the blank regions of IO space (empty or poorly covered regions
n the first excitation run). For that purpose, the identification data
rom Step 1 and the preliminary model trained in Step 2 were used
y the optimization algorithm. Step 4 basically reiterates the first two
teps with the LS sequence designed in Step 3, i.e., the optimal LS
equence was applied to the ConsiGmaTM-25 (second excitation run),
he first characteristic moment of PSD was evaluated, and the final
O space coverage was examined. The experimental data obtained in
8

tep 4 successfully extended the preliminary IO space (Step 2), i.e., the
initially empty ranges were filled with new data points. Therefore, it
can be stated that the collected experimental data precisely reflect the
system behavior on the operating range of interest and can be used for
model identification.

Note: Although the obtained experimental data are only valid for
modeling of the investigated pharmaceutical formulation, the proposed
method for the design of excitation runs is generally applicable and can
be re-executed for different formulations in a timely manner.

Model identification. The PSD data collected in the two excitation runs
were merged, the PSD signal processing was performed, and the PSD
characteristics were evaluated (according to Eqs. (1), (2), (4), and (6)
introduced in Section 2.2.3). The combined sequences (LS, 𝑀1, 𝑀2,
𝑀4, and 𝑒𝑟𝑒𝑓 ) were provided as the identification data set for the
LoLiMoT training. The training was performed in MATLAB using the
LMN-Toolbox (LMN-Tool, 2023; Hartmann et al., 2012) and repeated
for each of the proposed model outputs, i.e., a submodel per PSD
characteristics was created (please see Fig. 5). As a result, the final
granule size process model involves four neuro-fuzzy-models. For the
𝑀1 model, the time-delayed LS and size sequences were arranged as

𝐮𝑇 = [𝑢1,… , 𝑢𝑝] = [𝐿𝑆𝑘−1 …𝐿𝑆𝑘−𝑛𝐿𝑂𝐿
,𝑀1,𝑘−1 …𝑀1,𝑘−𝑛𝐿𝑂𝐿

] (14)

, and used as the inputs for the LoLiMoT structure proposed in Fig. 6(a).
The time delay 𝑛𝐿𝑂𝐿 = 3 was chosen as a compromise between the
model accuracy and complexity. The analog approach was followed for
the remaining PSD characteristics. The LoLiMoT algorithm suggested
to use the structures with 15, 12, 14, and 12 LLMs for 𝑀1, 𝑀2, 𝑀4,

and 𝑒𝑟𝑒𝑓 models, respectively. These results (together with the obtained
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Fig. 9. The granule size model trained via the LoLiMoT approach predicts PSD characteristics accurately on the training data set (CAPRI, 2023b).

Fig. 10. The granule size model trained via the LoLiMoT approach predicts PSD characteristics accurately on the validation data set (CAPRI, 2023b).
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experimental data) confirm the statements regarding the non-linear
behavior of granule size introduced in Nicolaï (2019), and justify the
choice of modeling algorithm (in contrast to LoLiMoT, linear models
like, e.g., transfer functions would not be sufficient to accurately reflect
the system behavior in the complete operating range).

Evaluation of model performance. The model performance was inves-
igated both on the training and validation data set. The modeling
esults depicted in Figs. 9 and 10 indicate a good agreement be-
ween the measured and predicted PSD characteristics and confirm the
uality of the identified model. The validation experimental data set
as not chosen randomly but originates from the preliminary control

oncept experiments. In these experiments, the reference value for
1 is changed, and the LS is accordingly adjusted, i.e., this data set

involves gradual changes of LS over the complete operating range,
as well as the dynamic short-time deviations from the nominal point.
Therefore, the good model performance is even more significant, as this
corresponds to a realistic application example. A discrepancy between
the measurement and the model prediction at the end of the validation
experiment (please see the violet section in Fig. 10) originates from
the difference between the LS set-point (SP) used as model input and
its respective actual value (AV). A fairly similar event would also occur
in the case of raw material variability (e.g., PB with different PSD) or
equipment faults (e.g., inaccurate feeding) where the model prediction
would not match the measured PSD characteristics. This indicates that
the difference between the measurement and model prediction could be
used for the development of a fault detection algorithm. Furthermore,
the SP and AV of LS could be compared in real-time, and the potential
deviations could be used as correction terms, additionally improving
the model performance.

3.2. Granule API- and moisture content model identification and validation

The experimental data required for the chemometric model develop-
ment were collected by means of the DoE data depicted in Table 3. The
variations of inlet API concentration in a range of 1.33 % to 7 % were
realized via SFR variations. Additionally, in order to assure the model
robustness by different amounts of granulation liquid, LS variations
in a range of 18 % to 30 % were introduced to the system via LFR
variations. Thus, the Raman spectral data at the boundary (1.33 % and
7 %) and central (4.12 %) DoE points were captured at different LS
levels. Each run was executed for approximately six minutes in order to
achieve the steady-state operation. The chemometric models predicting
the outlet API concentration and outlet LS were developed according to
the procedure described in Section 2.3.3. The model calibration results
are depicted in Fig. B.14 (please refer to Appendix B).

The performance of the developed chemometric models was inves-
tigated for the training- and the validation data set (please refer to
Figs. 11 and 12). In both cases, a satisfactory agreement between the set
inlet- and estimated outlet API concentration is confirmed. The same
can be stated for the results obtained with the second chemometric
model estimating the liquid content at the TSG outlet from Raman
spectral data. The 20 s time delay between the inlet- and via models
stimated outlet quantities is not a sign of the model weakness, but a
onsequence of the sampling time of the sampling device (please refer
o Section 2.3.2 for more details).

. Conclusion and outlook

The solutions proposed in this work allow the development of
dvanced control concepts for granule size, API-, and liquid content of
et granules in ConsiGmaTM-25. The validation results of the dynamic

model for granule size indicate very good conformity between the
measurement and model estimation and thereby confirm the model
quality. The same can be stated for the results of validation experiments
obtained for the chemometric models predicting the API- and liquid
content from the Raman spectral data. As such, these solutions can
be used as a reliable (and necessary) basis for the development of the
10

following use cases.
Table 3
Development of chemometric models DoE.

Run Nr. SFR1 SFR2 LFR 𝐿𝑆𝑖𝑛 𝐶𝑖𝑛

[/] [ kg
h
] [ kg

h
] [ g

min
] [%] [%]

1 2.5 12.5 60 24 1.33
2 2.5 12.5 45 18 1.33
3 5.6 9.4 75 30 3.0
4 7.73 7.27 75 30 4.12
5 7.73 7.27 60 24 4.12
6 7.73 7.27 45 18 4.12
7 9.38 5.62 75 30 5.0
8 13.13 1.87 75 30 7.0
9 13.13 1.87 60 24 7.0
10 13.13 1.87 45 18 7.0

Acronyms:
Solid feed rate of API feeder (SFR1), solid feed rate of the excipient feeder (SFR2), liquid
feed rate (LFR), liquid-to-solid ratio at the granulator inlet (𝐿𝑆𝑖𝑛), API concentration
at the granulator inlet (𝐶𝑖𝑛).

Fig. 11. Chemometric model predicting API- and liquid content of wet granules from
Raman spectral data for the training data set.

Fig. 12. Chemometric model predicting API- and liquid content of wet granules from
Raman spectral data for the validation data set.
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Fig. A.13. Raman analysis of raw materials in the pre-blend.
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Fault detection and digital assistant. The granule size process model can
un in parallel with the process. The difference between the predicted
i.e., 𝑀1,𝐿𝑂𝐿, 𝑀2,𝐿𝑂𝐿, 𝑀4,𝐿𝑂𝐿, 𝑒𝑟𝑒𝑓 ,𝐿𝑂𝐿) and via PAT probe measured

PSD characteristics (i.e., 𝑀1, 𝑀2, 𝑀4, 𝑒𝑟𝑒𝑓 ) can be used as trigger
ignals for the fault detection algorithm. This algorithm can be devel-
ped to detect and distinguish between different process disturbances,
uch as equipment or material faults. Furthermore, the fault detection
lgorithm can support the operator of the manufacturing line via an
ppropriate digital assistant concept. The digital assistant concept will
enerate valuable suggestions to the operator, e.g., to check the line for
otential faults and eliminate them.

oft-sensor for granule size. The identified granule size process model
an be used as a soft-sensor, acting as a potential replacement for
he Parsum probe. The soft-sensor application will be exceptionally
aluable for the ConsiGmaTM-25 constellations where the mounting
f the Parsum PAT probe is not feasible. The equipment setup with
he Raman probe placed at the TSG outlet would be an example of
uch a constellation: this configuration does not allow the additional
nstallation of the Parsum probe due to space limitations. In this case,
he soft-sensor application will allow the simultaneous monitoring of
ll intermediate CQAs, i.e., the measurement of API- and liquid content
ia Raman, and the prediction of the wet granules size via the LoLiMoT
pproach.

uality control concept. Intermediate CQAs, i.e., granule size, API-, and
iquid content can be monitored in real-time either via installed PAT
quipment or via a soft-sensor. This information can be used to discard
on-conforming material by means of an advanced discharge control
oncept.

rocess control concept. The granule size dynamic process model can
e used for the development of nonlinear MPC in a straightforward
anner. The model quality significantly impacts the MPC performance:
11

n the one hand, the model is used during MPC parameter tuning
via simulation studies (acting as a replacement for the real system),
and on the other hand, the MPC prediction algorithm that is part of
the MPC concept uses this process model as a core component. In
such an application, the MPC algorithm adjusts the granulation process
parameters (e.g., 𝐿𝑆) in order to keep the granule size (e.g., 𝑀1) close
to the reference. Furthermore, the API- and liquid content predicted
via chemometric models can be utilized as controlled variables in an
appropriate feedback control concept. Similarly to the granule size
MPC, the granulation process parameters can be adjusted in order to
keep API- and liquid content close to the reference values.

The introduced use cases would ensure an increased product quality
and allow the mitigation of process disturbances, ultimately improving
the performance of the ConsiGmaTM-25 production plant.
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Fig. B.14. Calibration of the chemometric models.
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